Microbial Bioinformatics

Introduction

These exercises are for you to learn how to use bioinformatics' tools to explore bacterial genomes, and complements the 'Microbiology of Safe Food' 2nd Edition (Wiley-Blackwell).

Table of Contents

EXERCISE 1: PHYLOGENETIC TREE CONSTRUCTION2
PART 1 : CLUSTALW
PART 2 : 16S-18S RDNA SEQUENCE ALIGNMENT, 'TREE OF LIFE'
PART 3: LACTIC ACID BACTERIA PHYLOGENETIC TREE6
PART 4: AMINO ACID SEQUENCE ALIGNMENT7
EXERCISE 2: FINDING 16S RRNA SEQUENCES
PART 1: USING NCBI
PART 2: USING RDPII
EXERCISE 3: BLAST SEARCHING
EXERCISE 4: SEARCHING A BACTERIAL GENOME
EXERCISE 5: INVESTIGATING A BACTERIAL GENOME USING ARTEMIS
EXERCISE 6: COMPARISON OF WHOLE GENOMES IN ENTEROBACTERIACEAE USING WEBACT
EXERCISE 7: MULTILOCUS SEQUENCE TYPING ANALYSIS (MLST)
PART 1: INTRODUCTION TO ONLINE MLST DATABASE ANALYSIS
PART 2: DATA DOWNLOAD FROM MLST DATABASE
APPENDIX : SEQUENCE CODES
A) DNA CODES
B) AMINO ACID CODE
C) COLOUR CODE

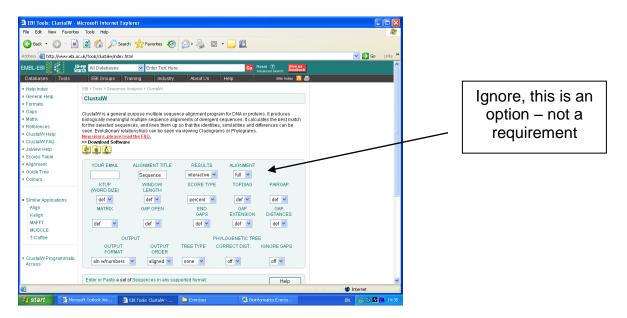
If you have real problems with all this simply contact me at stephen.forsythe@ntu.ac.uk.

Exercise 1: Phylogenetic tree construction

Part 1 : ClustalW

Introduction

This exercise introduces you to multiple sequence alignments, whereby your unknown sequence is compared to a number of preselected sequences (retrieved using BLAST; Exercise 2), and drawing a relationship tree, which is more commonly known as a 'phylogenetic tree'. The main program you will be using is ClustalW.


My suggestion is to open Internet Explore and have the ClustalW site and this guide open in different windows. You can do this by clicking on this link now and reducing it to the bottom of the screen until you need it.

ClustalW at http://www.ebi.ac.uk/clustalw/index.html.

This part shows you how to construct a relationship tree based on sequence similarity. You'll use the online multiple sequence alignment program ClustalW to determine where your organism is on the 'tree of life'.

Web address: http://www.ebi.ac.uk/clustalw/index.html.

Here is a screen print of the window that you will see.

Leave all these dropdown menu options at the default settings.

		GAPS	EXTENSION	DISTANCES	
def 💌	def 🛩	def 🚩	def 😽	def 🛩	
OUTF	τυν		PHYLOGENETIC TRE	E	
OUTPUT FORMAT	OUTPUT ORDER	TREE TYPE	CORRECT DIST.	IGNORE GAPS	
aln w/numbers 💊	aligned 🔽	none 🔽	off 🖌	off 🛩	
Enter or Paste a set of	Sequences in any sup	oported format:		Help	
Enter or Paste a set of	Sequences in any sup	oported format:		Help	

You can enter your sequence data by cutting and pasting or upload a file.

For this exercise we will use the cut and paste option.

You have three sets of sequences to analyse.

- a) 16S ribosomal DNA sequences for a range of bacteria
- b) 16S rDNA sequences for the lactic acid bacteria
- c) Amino acid sequences for staphylococcal and streptococcal toxins.

Together you can make similar figures to Fig. 2.1, 2.20, and 2.23 in the book.

If you want to learn how to find similar sequences go to Exercise 2 for 16S rDNA sequences and Exercise 3 for toxin sequences.

Part 2 : 16S-18S rDNA sequence alignment, 'Tree of Life'

'All' you need to do initially is to cut and paste each set of sequences together into the ClustalW (<u>http://www.ebi.ac.uk/clustalw/index.html</u>) window.

Here is the LINK (<u>http://www.foodmicrobe.com/Fig1.txt</u>) for the 16S sequence files for this exercise. It is named 'Fig 1 16S seq file'.

If you wish you can also turn on the 'color' (yeap American) alignment option, but it's not important, especially if you're colo(u)r blind like me!

After a few minutes you'll get a new screen. There are two formats depending upon how many sequences you have compare.

If it looks like this:

EMBL-EBI		EB-eye Search	All Databases	🗸 Er	iter Text Here			Go	Reset ? Advanced Search	Give u feedba	s
Databases	Tools	Jearch	EBI Groups	Training	Industry	About Us	Help			ndex 🗟	
= Help = General Help		(ClustalW Res	ults		·					
= Formats = Gaps					Resu	Its of search					
 Matrix References 			lumber of seque Sequence format			9 Pearson					
 ClustalW Help ClustalW FAQ 		s	Sequence type			aa					
= Jalview Help			ClustalW version Output file			1.83 <u>clustalw-200</u>	71022-1502046	66.out	put		
 Scores Table Alignment 			leighbor-Joining Phylip tree file	tree file			71022-1502046 71022-1502046				
 Guide Tree Colours 			'nylip tree file /our input file				71022-1502040				
- 000015		[SUBMIT AN	OTHER JOB							

Scroll down and you will see that the sequences have been aligned. You will also find at the bottom of the page a 'tree' showing the relative similarities of the sequences. However please note that they were in fact different lengths and for more precise comparisons you will need to trim the sequences to comparable lengths.

Click on 'Show as Phylogram tree' for a more understandable diagram.

Background comment, from ClustalW index:

A phylogram is a branching diagram (tree) that is assumed to be an estimate of a phylogeny. The branch lengths are proportional to the amount of inferred evolutionary change. A cladogram is a branching diagram (tree) assumed to be an estimate of a phylogeny where the branches are of equal length. Therefore, cladograms show common ancestry, but do not indicate the amount of evolutionary "time" separating taxa. It is possible to see the tree distances by clicking on the diagram to get a menu of options. The options available allow you to do things like changing the colours of lines and fonts and showing the distances.

Alternatively, you may get a screen which does not have the tree at the bottom. This occurs when you have compared a large number of sequences. Instead click on 'View Guide Tree' and continue as per the example above. Scroll down, and click on 'Show as Phylogram tree'.

Databases Tools	EBI Groups Training Industry	About Us Help Site Index 🔊
Help General Help Formats	ClustalW Results	
Gaps	Re	sults of search
Matrix	Number of sequences	16
References	Alignment score	30335
ClustalW Help	Sequence format	Pearson
ClustalW FAQ	Sequence type	aa
Jalview Help	ClustalW version	1.83
 Scores Table Alignment Guide Tree 	JalView	Start Jalview
Colours	Output file	clustalw-20071022-15492351.output
Colodis	Alignment file	clustalw-20071022-15492351.aln
	Guide tree file	clustalw-20071022-15492351.dnd
	Your input file	clustalw-20071022-15492351.input
	View Scores Table View Guide Tree	SUBMIT ANOTHER JOB

Note how the label in the FASTA files is used for the phylogenetic tree. Also it only uses the letters after the '>' symbol until there is a space.

Does the tree make sense? You need to look up the organisms to answer this question.

Using this first 16S rDNA sequence file you will be constructing a 'Tree of Life' which is focused on micro-organisms associated with food, In order to better follow the organisation of the tree you need to know what the different organisms are.

Bacillus cereus – Gram positive eubacterium, aerobic spore-former Bacteroides fragilis – Gram negative eubacterium Campylobacter jejuni – Gram negative eubacterium Clostridium perfringens – Gram positive eubacterium, strict anaerobe, spore-former Clostridum botulinum - Gram positive eubacterium, strict anaerobe, spore-former Escherichia coli – Gram negative eubacterium Lactobacillus acidophilus – Gram positive eubacterium Listeria monocytogenes – Gram positive eubacterium Micrococcus luteus – Gram positive eubacterium Pseudomonas aeruginosa – Gram negative eubacterium Pyrococcus furiosus – thermophilic archaea organism Salmonella Enterica – Gram negative eubacterium Staphylococcus aureus – Gram positive eubacterium

What does it tell you about the organisms you are not familiar with?

Traditionally cellular life is divided into prokaryotic and eukaryotic. However, what does the 'Tree of life' show you about 'bacteria'?

How can you find the differences between the sequences which have lead to the branches?

Looking at the alignments, can you regions of insertion or deletions? It may help you to click on 'Start Jalview'

ClustalW Results	
	Results of search
Number of sequences	13
Alignment score	24692
Sequence format	Pearson
Sequence type	aa
ClustalW version	1.83 🕂
JalView	Start Jalview
Output file	clustalw-20071022-15163711.output
Alignment file	clustalw-20071022-15163711.aln
Guide tree file	clustalw-20071022-15163711.dnd
Your input file	clustalw-20071022-15163711 input

To save a result file right-click the file link in the above table and choose "Save Target As". If you cannot see the JalView button, reload the page and check your browser settings to enable Java Applets.

You'll get a very colourful window:

http://www.e													
e Edit Selet	t View Form								7				
		10	20		10	40	50	80			¹⁰	90	
plodytea/1-434 pierro/1-458	MS	ILK-IHA	REITDER	ONPTVE			PEGASTO I	YEA-LEL R					KKLNVTE KNVNVVE
pro/vo/1-264								CHULCUM					KKL SMVD
lanogaster/1-433	3 N	TIKALKA	ROIVDSB	ONPTVE	DLTTEL	LI RAA	PEGASTOV	HEA-LELR	DNDKANYH	- HSVL RAVO	HUN-DIL	OPELIK	ANLDVVDD
Fxp/1-446							V <mark>PSGAST</mark> OV		DGG - SDYL			APALIG	K DPTS <mark>D</mark>
Wana/1-###					VELTTER		V PSGASTGI		DGG - SDYLC			GPALIG	ANI BUKBO
nuisian/1-437 1/1-432							APSGASTOS		DEDKSRELC			ADAL 16	K DAKDO
mys/1-431							PSGASTOR		DODKSEYLO			APEIVO	
nnaschii/1-427	MLYNMDERF	EIKDIVA	REVIDER	ONPTVE	VEVITION	- OYOSAI	V P SOASTOT	HEA-LELRO	KEK-REGO	- KOVLMAVE	NVN-611		Y DARMO
yssi/1-430	- MTMEN PY	ELVAVIA	REILDSR	GNPTVE	VDVHTP-	- SMGRAA	V <mark>P S G A S T G</mark> T	HEA-VELR	BGGK-RYHC	- KGVRRAVE	NVN-KII	APELVG	M DVRWD
Conservation					_							الما	
Conservation					2200000				0.0				
Conservation		-200213	3121333	332233	23200000	011021	223333230	133-23134	6002213	42300330	020-34	454893	4 7 0 43
		-200213	3121333	332233	23200000	011021	223333230	133-23134	002213	- 42300330	020-34-	454893	4 76 43 -
Conservation		-200213	3121333	002200	23200000	11021	223333230	133-23134	002213	42300330	020-34	484893	4 7 8 43 *
		-200213	3121333	332233	23200000	11021	223333230	133-23134	002213	42300330	020-34	454603	4 7 6 43 *
Quality		-200213	3121338	002200	23200000		223333230	133-23134	002213	42300330	020-34-	454003	4 7 6 43 -
		-200213	3121338	002200	23200000		223333230		002213		020-344	454893	4 7 0 43
Quality		المار لمريد				الم) الم					deni A se		u hu
Quality		المار لمريد				الم) الم					deni A se		u hu
Quality Consensus	M S - M +					الم) الم					deni A se		u hu
Quality Consensus	M S - M +	المار لمريد				الم) الم					deni A se		u hu
Duality Consensus	byssi Res					الم) الم					deni A se		u hu
Quality Consensus (uence 11 ID: P-al a Applet Window	Bysai Resi	TT K++ KA	La de	ONPTVE		- LF OR AA	VPSOASTO+	HEA-LELR			NVN - KT	TAPALIO	KNLDVTDO
Duality Consensus	byssi Res	TT K++ KA		ONPTVE		- LF OR AA		HEA-LELR			deni A se	TAPALIO	u hu

Use the slider to scroll along, and you will see the regions of similarity, as well as insertions/deletions.

Printing the tree from ClustalW is not easy (please let me know if you find a simpler solution than mine). I use the 'PrtScrn'button and then paste into Word[™]. For the book I used text boxes in Word[™] to add the addition labels.

Part 3: Lactic acid bacteria phylogenetic tree

Just as before you need to cut and paste the set of sequences into the ClustalW window at <u>http://www.ebi.ac.uk/clustalw/index.html</u>.

Here is the LINK for the lactic acid bacteria 16S rDNA sequence files; <u>http://www.foodmicrobe.com/Fig2.txt</u>.

Hopefully by reading through the book (Section 3.7.1), and referring to the figure you've generated you'll see that this collection of organisms have been named according to their ability to produce lactic acid, but otherwise they are fairly divergent. In fact the *Bifidobacterium* genus is a considerable distance from all the others. It may look similar to *Lactobacillus* down the microscope but its genetic history is very different.

Part 4: Amino acid sequence alignment

Just as there is a single letter code for the nucleotides in DNA, so there is also one for amino acids. This is great as the sequence of amino acids in a protein can be represented as a string of single letters and compared to another just as we've already done for DNA sequences. The single letter codes are given in the Appendix.

Just as before 'all' you need to do initially is to cut and paste the set of sequences into the ClustalW window; <u>http://www.ebi.ac.uk/Tools/clustalw2/index.html</u>. Here is the LINK for the staphylococcal-streptococcal toxins for this exercise; <u>http://www.foodmicrobe.com/Fig3.txt</u>.

You'll see although the sequences this time are amino acids, the results is again a phylogenetic tree based on the similarities between each file.

Confession: I did not know about the link between staphylococcal and streptococcal toxins when I first made the tree on p99. As I was preparing the chapter I wanted to put a variety of topics in the bioinformatics/phylogeny section as tasters of what can be done. I already had two examples based on ribosomal DNA (rDNA) sequences ('Tree of Life' and 'lactic acid bacteria') and wanted a protein example to complement them. The staphylococcal toxin (SEA etc) group came to mind and not being a specialist in staphylococcal toxins I thought it would be interesting to collate their sequences and see what the result was. First I used the terms 'staphylococcal' and 'SEA' PubMed search for the protein sequences (Exercise 2), and having made a core of sequences I did BLAST searching (Exercise 3) to see if there were any staphylococcal toxins (!). So I collated those as well and then made the phylogenetic tree with ClustalW. The result was Figure 2.21 in the book. Pure serendipity.

What you should know by the end of Exercise 1:

Difference between BLAST and ClustalW How to construct a phylogenetic tree, not cladogram How to look for sequence differences How to identify regions of interest that may relate to taxonomy.

Exercise 2: Finding 16S rRNA sequences

Part 1: Using NCBI for organisms which have been sequenced

Introduction

(a) Go to the NCBI Entrez genome site at Complete Microbial Genomes; <u>http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi</u>

	dit View Favorites 1	Fools H	lelp												-
Ba	ick 🕶 🐑 🐇 🚺		🔎 Search 📩 Favoril	tes) [3- 😓 🛛	0 - 📄	۲ <u>۵</u>							
dress	🙆 http://www.ncbi.nlm.r	nih.gov/g	enomes/lproks.cgi?view=1									*	∍	Go	Link
8	NCBI	ENT	REZ Genor	ne	P	roje	t –				conr	info	rma	tion cov	
	PubMed	Nucleoti	de Protein			Genome	Str	ucture	Pop:	Set	Taxonomy			(эмім
Sear	ch Genome Project	~				G	io Clear								
						ĺ	Organis	m info	Complete	e genom	es Geno	mes i	n nr	ണം	e e
							Organis.		compress	genom	es Oeno	mes i	n pr	ogre	aa
hraa	nism group: - All -		~												
лga		nd: T - T	axMap; P - ProtTable; C - (COG Tal	ble; D	- 3-D neighb	ors; L - BLA	ST; <mark>S</mark> - CDD se	arch; G - G	enePlot; 🔉	K - TaxPlot; M - gl	vIap; F	- FTI	R	Publ
size	is estimated, otherwise a	genome	size is calculated based on e	existing :	seque	nces						•			
2	590 Complete Mic	robial	Genomes selected: [A] - 47,	[B] -	543									sav
PID	Organism	King	Group	* Size	$\mathbf{G}\mathbf{C}$	#chr #plsm	GenBank	RefSeq	Released	Modified	Center			Tool	s
<u>5753</u>	<u>Acidiphilium cryptum</u> JF-5	в	Alphaproteobacteria	3.97	67.1	1 8	CP000697.1	<u>NC_009484.1</u>	05/11/07	08/14/07	<u>DOE Joint</u> <u>Genome</u> Institute	P		<u>L</u> <u>S</u>	<u>c</u> x
		B B	Alphaproteobacteria Acidobacteria		67.1 58.4	1 8	CP000697.1 CP000360.1	NC_009484.1 NC_008009.1			<u>Genome</u> Institute DOE Joint	<u>p</u> t p	D	L <u>S</u> L <u>S</u>	
5771	<u>IF-5</u> Acidobacteria			5.7					05/04/06	09/21/07	Genome Institute DOE Joint Genome Institute DOE Joint				<u>c</u> x
5771 6097	JE-5 Acidobacteria bacterium Ellin345 Acidothermus	в	Acidobacteria	5.7 2.4	58.4	1	CP000360.1	NC_008009.1	05/04/06 11/09/06	09/21/07 09/21/07	Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint	<u>T</u> P	Ð	LS LS	G X
<u>5753</u> 5771 6097 5708 5685	JF-5 Acidobacteria bacterium Ellin345 Acidothermus cellulolyticus 11E Acidovorax avenae	B B	Acidobacteria Actinobacteria	5.7 2.4	58.4 66.9 68.5	1	<u>CP000360.1</u> <u>CP000481.1</u>	NC_008009.1 NC_008578.1	05/04/06 11/09/06 01/04/07	09/21/07 09/21/07 01/05/07	Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint	T P T P	D D	LS LS	G X G X
<u>5771</u> 6097 5708	JF-5 Acidobacteria bacterium Ellin345 Acidothermus cellulolyticus 11E Acidovorax avenae subsp. citrulli AAC00-1	B B B B	Acidobacteria Actinobacteria Betaproteobacteria	5.7 2.4 5.4	58.4 66.9 68.5 66.1	1 1 1 1 1 2	CP000360.1 CP000481.1 CP000481.1	NC_008009.1 NC_008378.1 NC_008752.1	05/04/06 11/09/06 01/04/07 01/04/07	09/21/07 09/21/07 01/05/07 01/11/07	Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute [more]	T P T P T P	D D		G X G X
5771 6097 5708 5685	JE-5 Acidobacteria bacterium Ellin345 Acidothermus cellulolyticus 11E Acidovorax avenae subsp. citrulli AAC00-1 Acidovorax sp. JS42 Acidovorax sp. JS42 Acinetobacter baumannii ATCC 17978	B B B B	Acidobacteria Actinobacteria Betaproteobacteria Betaproteobacteria	5.7 2.4 5.4 4.54 4.02	58.4 66.9 68.5 66.1	1 1 1 1 1 2	CP000360.1 CP000481.1 CP000512.1 CP000539.1 CP000521.1	NC_008009.1 NC_008578.1 NC_008752.1 NC_008782.1	05/04/06 11/09/06 01/04/07 01/04/07 03/01/07	09/21/07 09/21/07 01/05/07 01/11/07 05/02/07	Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute DOE Joint Genome Institute Institute More Joint Genome Institute [more] Yale Univ.	T P T P T P T P			

(b) Scroll down to the organism of choice, in this case *Bacillus cereus* 03BB102.

Click on the organism name.

8

You will get a long list of *B. cereus* genome projects, and towards the bottom:

Genome Project > Bacillus c	ereus > Bacillus cereus []	<u>BBB102</u> project by The	J. Craig Venter Institute						2
Resource Links	Clinical isolate.							Projec	t data
NCBI Resources									
• FTP	Lineage: Bacteria; Firr	nicutes; Bacillales; Bac	cillaceae; Bacillus; Bacill	s cereus group; Bac	illus cereus 03E	3B102			
TaxPlot						52	69628 nt		
BLAST genome							1 alele		
Bacillus			All Dans			and a line	NA BULLING CONTRACTOR		
Resources									
Organism data						1/	315		
in GenBank									
 Genomic mRNA 			ALL DATE				JK		
Protein		2 - 1	AS A C			A DECEMBER OF THE OWNER OWNE	the subscription of the second		
• WGS		Photo: © Frederick C. M	Aichel, ASM MicrobeLibrary				denetie.		
Sequencing		-							
Centers	Genome Projects						Comparativ	e genom	ics: 🗆 🤍
TIGR							Bacillus by	TIGR	
INRA	Genome sequencing:								
 Integrated 		quencing status 'In progr							
Genomics		quencing status 'Complete							
 DOE Joint Genome Institute 	Plasmid genome:	quencing status 'Draft as	sembly': 34 projects						
Related		rojects							
Resources	RefSeq:	rojeets							
 Bacillus MLST 	± 1 p	roject							
Genome information:									
Name	RefSeq	GenBank	Length (Mbp)	GC content	Proteins	RNAs	TaxMap	CDD	COG
Chromosome	NC 012472	CP001407	5.26963	35.0%	5398	<u>154</u>	~	~	~
Plasmid p03BB102_179	<u>NC 012473</u>	CP001406	0.18	32.0%	208	*			
N 11 0101	144					<u> </u>			
Bacillus cereus 03BE	5102								
the other is late onset (diarri dodecadepsipeptide cerulid necrotic enteritis (death of i	heal). The rapid onset is char e whereas the diarrheal disea ntestinal epithelial cells) while	acterized by nausea and vo use is caused by a heat labi the unique tripartite membr	es food poisoning in infected i omiting while the late onset is ile enterotoxin. Some strains p rane lytic toxin hemolysin BL d that some strains have plasn	haracterized by diarrhe roduce a potent cytoto ontributes to the diarrhe	a and abdominal p kin that forms a po al disease and des	ain. The eme re in the mem structive infect	ic disease is cau brane of eukary ions of the eye.	sed by a si otic cells a	mall stabl and cause

To find the ribosomal genes (23S, 16S, 5S) encoded on a genome, click on the RNAs link.

Another window will open up and you can see a list of the relevant genes to download.

File Edit View Favorites	fools Help									
🌏 Back 🔹 🐑 - 💌 👔	🔊 🏠 🔎 s	earch 🤸	Favorite	s 🙆	2· 🎍	8	•			
http://www.ncbi.nlm.r 🙋	nih.gov/sites/entre	z?Db=genor	ne&Cmd=	Retrieve&d	opt=Structura	I+RNA+	Table&list_uids=	=164	✓ →	Go Links
16S ribosomal RNA	<u>274044</u>	<u>275583</u>	+	1540	<u>1109945</u>	rrs	BU243	• •		
Ile tRNA	275637	<u>275713</u>	+	77	<u>1109957</u>	-	BU618	* 		
Ala tRNA	<u>275728</u>	<u>275800</u>	+	73	<u>1109958</u>	-	BU619	• •		
Asp tRNA	<u>277895</u>	<u>277968</u>	+	74	<u>1109959</u>	-	BU620	٠ ٠		
Leu tRNA	364524	<u>364607</u>	-	84	<u>1109960</u>	-	BU621	* 		
Cys tRNA	364619	<u>364692</u>	-	74	<u>1109961</u>	-	BU622	• •		
Ser tRNA	364863	<u>364947</u>	+	85	<u>1109962</u>	-	BU623	* 		
Leu tRNA	420072	420157		86	1109963	-	BU624	••		
Ser tRNA	443263	<u>443354</u>	+	92	<u>1109964</u>	-	BU625	• •		
Arg tRNA	443372	443445	+	74	1109965	-	BU626	* 		
Gin tRNA	449053	449127	-	75	1109966	-	BU627	* 		
Leu tRNA	449220	<u>449301</u>		82	1109967		BU628	• •		
Met tRNA	449313	449389	-	77	1109968	-	BU629	* 		
Met tRNA	504133	504209	-	77	1109969	-	BU630	• •		
Arg tRNA	535708	<u>535781</u>	-	74	<u>1109970</u>		BU631	• •		
5S ribosomal RNA	539312	539426	<u>\</u>	115	1109946	rrf	BU490	**		
23S ribosomal RNA	<u>539539</u>	542451).	2913	1109947	rrl	BU491	* *		
Glu tRNA	542613	542685	-	73	<u>1109971</u>		BU632	• •		
Ser tRNA	574863	<u>574947</u>	+	85	1109972	-	BU633	* *		
0	201010	704000		70	4400070		DUCA	1	🔵 Internet	

Tip: Not all sequences deposited are in the same orientation. You may find you have a collection of 16S sequences which do not make a sensible tree, yet if you BLAST them you always get the right organism. It is possible that you have downloaded the reverse complement which will mess things up when using ClustalW as it compares exactly what you have submitted, whereas BLAST will compare in the three reading frames of the top strand and the three reading frames of the bottom strand. Use the program at http://arep.med.harvard.edu/labgc/adnan/projects/Utilities/revcomp.html to generate reverse complement sequence and retry making the phylogram. This can occur with other DNA sequence files.

Part 2: Using RDPII

Go to the Ribosomal Database Project II at http://rdp.cme.msu.edu/index.jsp .

Below is a screen shot of what you should get:

🚰 Ribosomal	Database Project - Release	10 - Microsoft Internet Expl	orer				_ 7 🗙
File Edit Vie	ew Favorites Tools Help						
🌏 Back 🔹	🕞 - 🖹 🖻 🏠 🔎	Search 🤺 Favorites 🧑	🔗 • 🍓 🛛 🔹 🗾 🕯	đ.			
Address 🙆 http	p://rdp.cme.msu.edu/index.jsp						Go Links »
		MAL DATABA	2E FRUJECT	RDP HOME ABOUT ANNOUNCEMENTS		FACTS RESOURCES RELATED SIT	ES TUTORIALS
г	RDP Release 10, Update 5 .: Oct	ober 30, 2008 :: 706,103 16S rRN	As ices to the scientific community,	Cite RDP's NAR article @		kgin	
		ed and annotated Bacterial and Archaeal :	small-subunit 165 rRNA sequences.	Cite RDP'S NAK article @		News	
R	RDP Release 10 brings two major chang	ges to the RDP: and Archaeal alignments with several si	ignificant enhancements over the prev	ious RDP 9 alignments.	10/30/2008 RDP 10, Upc	re <i>ad more</i> ate 5 Released.	=
	 Use of the <i>infernal</i> secondary-s artifacts in a more intuitive ma Explore our online analysis tools 		- tter support for short partial sequence	s and handles certain sequencing	Release 10 is	read more ate 2 Released. RDP now the latest official e Ribsomal Database	
	example BROWSERS CLASSING		nu to see a brief popup description of n working with it.	its features;	available. 05/22/2008 RDP 9, Upda Classifier tr:	from ASM now read more te 61 Released. RDP aining data updated.	
	LIB COMPARE SEQ MATCH	Be sure to view the video tu advantage.	torials and visit each tool's help file to u	ise our site to your fullest	03/22/2007 New video tu Flash, Quick Media forma	itorials available in time and Windows	
	PROBE MATCH TREE BUILDER PYROSEQUENCING				release inclu	read more te 59 Released. This des a beta version of omatic visualization	
	ASSIGNMENT GENERATOR				upload and r	read more simple chromatograms esearch buddies to lity filter can be	
	TAXOMATIC				applied to v sequences.	ew only good quality	
	RDP9 RDP8,1				03/23/2006 Batch retrie accession nu	val by GenBank mbers available.	
		Suonsors:			02/02/2006	read more	~
ē	10.					🥑 Internet	
🛃 start	🗁 B&B	Bioinf & Biotech diary	Microbial Bioinformati	🥭 7 Internet Explorer 🔹 🔹		Er	v 🔇 12:03

There's lots, and lots of tools you can use here, but for now we will keep to retrieving 16S rRNA sequences for specific organisms.

This example will look for some key bacteria which cause foodborne illness: Salmonella Enterica and S. Typhimurium Escherichia coli O157 Staphylococcus aureus Bacillus cereus Clostridium perfringens and Clostridium botulinum Campylobacter jejuni

Click on the 'Browser' (circled above) to get the following page:

Choose the following:

erarchy Br	owser - Start			
Strain:	С туре	C Non Type	Both	
Source:	C Uncultured	C Isolates	⊙ Both	
size:		C <1Z00	O Both	Browse
Quality:	Good Good	C Suspect	C Both	
Faxonomy:	Nomenclatural	C NCBI		

and then click on 'Browse'

Enter the organism of choice in the search box.

Ribosoma	I Database	Project II 🛛 🔗
RDP HOME BROWSER CLA	SSIFIER LIBCOMPARE SEQ	MATCH PROBE MATCH TREE myRDP seqCART
Hierarchy Browser		O sequences selected; O match your data set
		[start over help publication view download
Display depth: Auto 💌	Escherichia.coli Se 4 sequence(s) matcheo	arch More search tips I your query. Show both hits and non-hits
Lineage (click node to return i	t to hierarchy view):	

Т

You will need to 'drill' down via the 'Proteobacteria', and then '*Enterobacteriaceae*' to find *Escherichia coli*.

rchy	view:
	no rank Root (0/286680/345) (selected/total/search matches)
	domain Archaea (0/5724/2)
2	phylum Crenarchaeota (0/1365/1)
	class Thermoprotei (0/1365/1)
1	order Sulfolobales (0/278/1)
1	Bacteria Outgroup (0/1/1) domain Bacteria (0/280953/343)
i.	phylum Thermotogae (0/325/2)
	class Thermotogae (0/325/2)
	order Thermotogales (0/325/Z)
	phylum Deinococcus-Thermus (0753171)
	class Deinococci (0753171)
	order Thermales (0/30Z/1)
	phylum Cyanobacteria (0/4697/Z)
1	class Cyanobacteria (0/4697/Z)
1	family Chloroplast (0/1179/Z)
i .	phylum Proteobacteria (0/91395/267) class Aphaproteobacteria (0/22928/2)
i.	order Rhizobiales (0/9368/2)
	class Betaproteobacteria (0/16649/15)
	order Burkholderiales (0/11693/15)
	class Gammaproteobacteria (0/42558/249)
	order Acidithiobacillales (0/397/1)
	order Xanthomonadales (0/Z546/3)
	order Pseudomonadales (0/14622/4)
	order Vibrionales (0/2118/2)
1	order Enterobacteriales (0/8017/233) order Pasteurellales (0/1614/6)
Ξ.	class Epsilonproteobacteria (0/2667/1)
	family Alcaligenaceae (0/1053/8)
÷	genus Alcaligenes (0/113/1)
÷	genus Achromobacter (0/Z88/4)
+	genus Bordetella (0/128/3)
÷	family Comamonadaceae (0/34Z3/6)
÷	genus Comamonas (0/475/Z)
+	genus Acidovorax (0/462/2)
÷	enus Delftia (0/387/1)
÷	unclassified_Comamonadaceae (0/580/1)
÷	class Gammaproteobacteria (0/42558/249)
+	order Acidithiobacillales (0/397/1)
÷	family Acidithiobacillaceae (0/395/1)
÷	genus Acidithiobacillus (0/395/1)
÷	order Xanthomonadales (0/2546/3)
÷	family Xanthomonadaceae (0/2546/3)
	genus Stenotrophomonas (0/1229/3)
	order Pseudomonadales (0/14622/4)
÷	family Pseudomonadaceae (0/14022/4)
÷	genus Pseudomonaus (0/10802/3)
÷	family Moraxellaceae (0/3327/1)
	genus Acinetobacter (0/2429/1)
	order Vibrionales (0/Z118/Z)
	family Vibrionaceae (0/2118/2)
	genus Vibrio (0/1494/2)
	order Enterobacteriales (0/8017/233)
	family Enterobacteriales (0/801//233)
	enus Escherichia (0/35/12)
	genus Escherichia (0735712) genus Citrobacter (0745374)
÷	genus Enterobacter (0/763/4)
÷	genus Enterobacter (0/783/4) genus Klebsiella (0/339/1)
÷	
	genus Proteus (0/69/Z)
	genus Raoultella (0/69/1)
	genus Salmonella (0/587/5)

DP HOME BROWSER CL/	ASSIFIER LIBCOMPARE SEQMATCH PROBE MATCI		
	O sequences selec	ted; O match your data set	
erarchy Browser	[start over	help publication view download]	
isplay depth: 🔤	Escherichia.coli Search More search tips 4 sequence(s) matched your query. Sho	w both hits and non-hits	
neage (click node to return	it to hierarchy view):		
erarchy View:			
Implementation of the sector of the sect			
FASTA	a coli (T); ATCC 11775T; X80725 Imonella (0/3/1) 0/1341/2)		

Move your cursor over the selected organism number on the left-hand side, and a temporary window will open arrowed above. This is a bit tricky as it is not apparent that these embedded links exist.

Click on the FASTA option as this will be more appropriate for you.

Another window will open with the sequence in FASTA format. Copy and paste to a Word file (use font size 8 to save space), and save in PLAIN TEXT format using the 'Save as' and pull down options.

You need to ensure the label line is useful.

For example: >Escherichia-coli (type strain) ACTACATTCGA...etc

This is okay as the 'Escherichia-coli' will appear as the label in the resulting tree when you do the phylogenetic analysis. The '(type strain)' will not appear as part of the label as there is a space after 'coli'.

I **strongly** recommend that you put a list together of the organism name, strain and sequence accession number. If you get into this habit, it will save you lots of wasted time repeating searches in the future as you can just enter the accession number into the NCBI website. This is a lot easier than a general search for each organism.

If you're not sure what the accession number is, look at the line below which is the first line for the *E. coli* FASTA file:

S000004313 Escherichia coli (T); ATCC 11775T; X80725

Background comment: The culture collection code ATCC 11775, which refers tot eh American Type Culture Collection (<u>www.atcc.org</u>). 'T' means it is the type strain, and has therefore been well studied.

The only numbers left are S000004313, and X80725.

Go to NCBI web site (<u>http://www.ncbi.nlm.nih.gov/</u>) opt for the 'CoreNucleotide' in the 'Search box, and enter each value in the search facility and see what you get. One makes sense, the other doesn't.

The alternative method is to go back to the Heirarchy Browser and click on Genbank instead of FASTA.

Also remember that these exercises are to introduce you to the basic tools in bioinformatics, they are applicable to eukaryotic as well as prokaryotic systems. You may also find them of use in other projects. All the best!

What you should know by the end of Exercise 7, Part 2:

How to use ClustalW for multisequence alignment analysis How to construct labelled phylogenetic trees How to interpret features of an 'unknown' organism, from similarity comparison.

Exercise 3: BLAST searching

Introduction

The aim of this exercise is to identify the amino acid sequence for an unknown protein using BLASTP:

```
MNRRDFIKNTAIASAASVAGLSVPSSMLGAQEEDWKWDKAVCRFCGTGCGIMIARKDGKIVATKGDPAAP
VNRGLNCIKGYFNAKIMYGEDRLVMPLLRMNEKGEFDKKGKFQQVSWQRAFDEMEKQFKKAYNELGVTGI
GIFGSGQYTIQEGYAALKLAKAGFRTNNIDPNARHCMASAVVGFMQTFGVDEPSGCYDDIELTDTIITWG
ANMAEMHPILWSRVSDRKLSNLDKVKVVNLSTFSNRTSNIADIEIIFKPNTDLAIWNYIAREIVYNHPEA
MDMKFIKDHCVFATGYADIGYGMRNNPNHPKFKESEKDTVEKENVITLDDEEATSLSYLGVKAGDKFEMK
HQGVADKNWEISFDEFKKGLAPYTLEYTARVAKGDDNESLEDFKKKLQELANLYIEKNRKVVSFWTMGFN
QHTRGSWVNEQAYMVHFLLGKQAKPGSGAFSLTGQPSACGTAREVGTFSHRLPADMVVANPKHREISEKI
WKVPAKTINPKPGSPYLNIMRDLEDGKIKFAWVQVNNPWQNTANANHWIAAAREMDNFIVVSDCYPGISA
KVADLILPSAMIYEKWGAYGNAERRTQHWKQQVLPVGAAMSDTWQILEFAKRFKLKEVWKEQKVDNKLTL
PSVLEEAKAMGYSEDDTLFDVLFANKEAKSFNPNDAIAKGFDNTDVKGDERKIQGSDGKEFTGYGFFVQK
YLWEEYRKFGLGHGHDLADFDTYHKVRGLRWPVVNGKETQWRFNTKFDYYAKKAAPNSDFAFYGDFNKML
TNGDLIAPKDEKEHSIKNKAKIFFRPFMKAPERPSKEYPFWLATGRVLEHWHSGTMTMRVPELYRAVPEA
LCYMSEKDGEKLGLNQGDLVWVESRRGKVKARVDMRGRNKPPVGLVYVPWFDENVYINKVTLDATCPLSK
QTDFKKCAVKIYKA
```

Tip: Look up what the differences are between the 6 BLAST programs; <u>http://blast.ncbi.nlm.nih.gov/Blast.cgi</u>.

You will find the Appendix at the end of the document useful for looking up the single letter codes for the amino acids.

Use the NCBI BLAST site at <u>http://www.ncbi.nlm.nih.gov/BLAST/</u> Click on the Protein-protein BLAST (blastp)

BLAST: Basic Local Alignment and Search Tool - Microsoft Internet Explorer	
File Edit View Favorites Tools Help	
🔾 Back 🔹 🕥 - 🖹 😰 🏠 🔎 Search 👷 Favorites 🤣 🏂 - چ 🔯 🔹 🛄 🎇	
Address 🗃 http://www.ncbi.nlm.nlh.gov/BLAST/	💌 🛃 Go 🛛 Links
BLAST Basif Local Alignment Search Tool Home Recent Results Saved Strategies Her	M <u>y NCBI</u> [Sign In] [Register]
▶NCBI/BLAST Home	News
BLAST finds regions of similarity between biological sequences. more	
Learn more about how to use the new BLAST design	Hew Human and Mouse pre- indexed databases
BLAST Assembled Genomes	Human and mouse genomic + transcript megablast searches now use a faster, indexed eleptition that typically reduces
Choose a species genome to search, or t <mark>et all genomic BLAST databases.</mark> Human Hyza sativa Gallus gallus Mouse Bos taurus Pan troglodytes	run time by two tifvide, as compared with standard megablast. 2007-08-04 10:55:00
Rat Canic rario Arabidopsis thaliana Drosophila melanogaste Canic rario Drosophila melanogaste Canic rario Apis mellifera	More BLAST news
Basic BLAST	Tip of the Day
Choose a BLAST program to run.	Using Genomic BLAST
nucleotide Inter Algorithms: blastn, megablast, discontiguous megablast	Genomic BLAST pages are helpful because they allow the genomic context of a BLAST search to be digtayed in the
protein blast Algonthme: blastp, psi-blast, phi-blast	Mep Viewer. For example, discontiguous (cross-species) MegaELAST against the human
blastx Search protein database using a translated nucleotide query	RefSeq transcript for allournin (NM 000477) can be used to
tblastn Search translated nucleotide database using a protein query	identify the homolog in the rat
	🧐 Internet
🛃 Start 🔊 🕫 Externist Explorer 🕞 Exercises 🔛 Bioinformatics Exercis	EN 🔍 👫 15:57

Because of variation in codon usage, in this example use the 'BLASTP' search. The top of the screen should look like this:

	🖞 🏠 🔎 Search 👷 Favorites 🧭 🔗 - 🌺 🔯 - 🛄 🎇	N C. Inte ?	
LAST	h.gov/BLAST/Blast.cg/PAGE=Proteins8PROGRAM=blastp8BLAST_PROGRAMS=blastp8PAGE_TYPE=BlastSearch8SHOW_DEFALLTS=on Basic Local Alignment Search Tool	Co Links »	
Home Recent R		My NCBI 12 [Sign In] [Register]	
			ionco
BLAST/blastp suite: I	LASTP programs search protein databases using a protein query. <u>more</u> <u>Reset page</u> <u>Bookmark</u>	Sequ	lence
Enter Query Se	quence		
	umber, gi, or FASTA sequence 😡 <u>Clear</u> Querysubuange 💓		
	From		
	То		
Or, upload file	Browse		
Job Title			
	Enter a descriptive title for your BLAST search 😣	CHE	ЮΚ
	Set		
Choose Search			
Database	Non-redundant protein sequences (nr) 🔽 🐨		
Database Organism			
Database	Non-redundant protein sequences (m) V V V Enter organism name or id-completions will be suggested Enter organism common name, binomial, or taxi U. Only 20 top taxa will be shown.		7
Database Organism Optional Entrez Query	Enter organism name or idcompletions will be suggested	NOTE	7
Database Organism Optional	Enter organism name or idcompletions will be suggested	NOTE]
Database Organism Optional Entrez Query	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	NOTE	
Database Organism Optional Entrez Query Optional	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown. Enter an Entez query to limit search @ tion	NOTE	
Database Organism Optional Entrez Query Optional Program Select	Enter organism name or id-completions will be suggested Enter organism common name, binomial, or tax id. Only 20 top taxa will be shown.	NOTE	

Paste the amino acid sequence on the previous page into the 'Query Sequence' box.

Be **VERY** careful to check the other pull down menus ('Check' above). Unfortunately frequently the BLAST pages default to searching the human genome, which is not quite what we wanted to do for 5 minutes....!

Press 'BLAST' and then another window will open. Bottom of Form

🗿 NCBI Blast: Icl 7616 (660 letters) - Microsoft Internet Explorer		🛛							
File Edit View Favorites Tools Help	ile Edit View Favorites Tools Help 🥂 👔								
🔾 Back + 💿 - 😠 🖉 🏠 🔎 Search 👷 Favorites 🤣 🔗 - 🌺 🔯 + 🛄 鑬									
idress 🗿 http://www.ncbi.nim.nih.gov/BLAST/Blast.cgi 🔽 🄁 Go Links									
BLAST Basic Loc Home Recent Results Saved Strategies Help	al Alignment Search Tool	My NCBI 22 A							
KCBI/BLAST/blastp/Formatting Results - H70KEKGY015 [Formatting options]									
Job Title: Icl[7616 (660 letters)									
	en detected, click on the image below for detailed results. مراجع مراجع م مراجع مراجع مراجع مراجع مراجع مرا								
Request ID	H70KEKGY015								
Status	Searching								
Submitted at	Mon Oct 15 11:08:30 2007								
Current time	Mon Oct 15 11:08:36 2007								
Time since submission									
This page will be automatically updated in 12 seconds Copyright Disclaimer Privacy Accessibility Contact Send feedback on new interfac	8	NCBUNLMINHIDHHS							

The window will update, and you can scroll down a little to a list of organisms in which your amino acid sequence has already been found in. The nearest match will be first. Scroll further down and you can see the regions where the similar occurs (simple consensus sequence).

The example below shows regions of homology, insert/deletion ('indel'), and where equivalent amino acids are found in the same position. Try to find these for yourself, before asking for help.

```
> _ ref NP 907363.1 G PERIPLASMIC NITRATE REDUCTASE [Wolinella succinogenes DSM 174
 emb|CAE10263.1| G PERIPLASMIC NITRATE REDUCTASE [Wolinella succinogenes]
Length=947
 Score = 1075 bits (2779), Expect = 0.0, Method: Composition-based stats. Identities = 503/662 (75%), Positives = 577/662 (87%), Gaps = 3/662 (0%)
             NRRDFIKNTAIASAASVAGLSVPSSMLGAQEED---WKWDKAVCRFCGTGCGIMIARKDG
Query 2
+RR+F+K+ A ASAAS G+SVPS +L +E U+WDK+VCRFCGTGCGIM+A K+
Sbjct 23 SRREFLKSAAAASAASAVGMSVPSQLLAQAQEGEKGWRWDKSVCRFCGTGCGIMVATKND
Query 59 KIVATKGDPAAPVNRGLNCIKGYFNAKIMYGEDRLVMPLLRMNEKGEFDKKGKFQQVSWQ
                                                                                      118
              +IVA KGDPAAPVNRGLNCIKGYFNAKIMYG DRL PLLR+NEKGEFDK+GKF+ VSW+
Sbjet 83 QIVAVKGDPAAPVNRGLNCIKGYFNAKIMYGADRLTDPLLRVNEKGEFDKQGKFKPVSWK
                                                                                      142
Query 119 RAFDEMEKQFKKAYNELGVTGIGIFGSGQYTIQEGYAALKLAKAGFRTNNIDPNARHCMA
                                                                                      178
+AFD ME QFK+AYNELG TGIG+FGSGQYTIQEGY A KL K GFR+NN+DPNARHCMA
Sbjct 143 KAFDVMEAQFKRAYNELGPTGIGVFGSGQYTIQEGYMAAKLIKGGFRSNNLDPNARHCMA
                                                                                      202
Query 179 SAVVGFMQTFGVDEPSGCYDDIELTDTIITWGANMAEMHPILWSRVSDRKLSNLDKVKVV
                                                                                      238
                   FM+TFG+DEP+GCYDDIELTDTIITWGANMAEMHPILW+RV+D+KLSN DKVKV+
              SAV
Sbjct 203 SAVAAFMETFGIDEPAGCYDDIELTDTIITWGANMAEMHPILWARVTDKKLSNPDKVKVI
                                                                                      2.62
Query 239 NLSTFSNRTSNIADIEIIFKPNTDLAIWNYIAREIVYNHPEAMDMKFIKDHCVFATGYAD 298
```

The line between the two sequences gives the matching amino acid, or '+' for when the amino acids are structurally equivalent, and therefore would not lead to a major change in the 3D structure of the protein.

'Identities 503/662' means that identical amino acids were found in 503 positions out of 662.

'Positives = 577/662' mean that identical plus structurally similar amino acids were found in 577 out of 662 positions.

'Gaps= 3/662' refers to the stretching of the sequence by 3 positions to improve the fit.

Go back to the BLASTP page and enter an Accession number instead of the sequence in the Query sequence box, for example ZP_01071654. You'll see another reason why noting an Accession number can be useful.

What you should know at the end of this Exercise:

Difference between DNA and amino acid sequences Differences between BLASTN and BLASTP Why two DNA sequences for the same enzyme can differ? What do 'Sbjct' and 'Query' refer to when you do a BLAST search? What is an 'Indel'? What do the terms 'Identities', 'Positives' and 'Gaps' refer to?

Exercise 4: Searching a bacterial genome

Introduction

(a) Go to the NCBI Entrez genome site at the NCBI 'Complete Microbial Genomes': (http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi?view=1

9	질•ੇ C × ☆ ⊠ ୬ ଘ	3 💰	10 🚼 🔠 🎯 🤇	용 <mark>http://w</mark>	ww.ncb	i.nlm.r	hih.gov	//genomes/lpro	oks.cgi?view=1			ź	7 - 💦		gle		
	t Visited 📄 Getting Started <u></u> Latest H				_												
Mi	crosoft Outlook Web Access X	food	dmicrobe.com: File Manager	×	3 Com	plete N	Aicrob	ial Genomes	× +								
2	NCBI	REZ	Genome	Proi	act		-	_					conr	infor	mation	ı	
、 ノ	P INCDI PubMed Nucleotide		Protein		Geno	_		Stru	dure	Pr	pSet	Тахолог	DV.		discov	мім	
earc	h Genome Project 🔹	-		G		lear					, polet						
									Organis	m info	Com	olete genomes	Cono	maa in	progre		
									Organis	шшо	Сощ	piete genomes	Geno	шез ш	progre	:55	
orgai	nism group: All		-														
					otTable;	C - CC	DG Tal	ble; <mark>D</mark> - 3-D nei	ghbors; L - BLA	ST; S - CDI	D search;	G - GenePlot; X - TaxP	lot; M - g!	Map; F -	FTP; R	- Public	cations
	is estimated, otherwise genome size is cal 1116 Complete Microbial Genom															save	
PID	Organism	King	Group	* Size	GC	#chr	#plsn	1 GenBank	RefSeq	Released	Modified	Center			Too	ols	
												Genome Sequencing C	enter				
<u>997</u>	Acaryochloris marina MBIC11017	в	Cyanobacteria	8.36	47.0	1	9	• <u>CP000828.1</u>	<u>NC_009925.1</u>	10/16/07	04/09/10	(GSC) at Washington University (WashU) S	chool of	ŢΡ	<u>D</u> <u>L</u> <u>S</u>	<u>G</u> X	E I
												Medicine [more]					
_	Acetobacter pasteurianus IFO 3283-01	в	Alphaproteobacteria	3.33	53.1	1	(5 <u>AP011121.1</u>	NC_013209.1	08/26/09	04/16/10	Yamaguchi Univ., Japa	in [more]	<u>Τ</u> Ρ	<u>D</u> <u>L</u> <u>S</u>	<u>G</u> X	E
141	Acetobacter pasteurianus IFO 3283-01-42C	в	Alphaproteobacteria	* 3.23	53.1			<u>AP011163</u>		08/26/09		Yamaguchi Univ., Japa	m [more]	<u>P</u>	L	<u>G</u> Σ	
131	Acetobacter pasteurianus IFO 3283-03	в	Alphaproteobacteria	* 3.33	53.1			AP011128		08/26/09		Yamaguchi Univ., Japa	ın [more]	P	Ŀ	<u>G</u> X	
133	Acetobacter pasteurianus IFO 3283-07	в	Alphaproteobacteria	* 3.33	53.1			AP011135		08/26/09		Yamaguchi Univ., Japa	in [more]	P	L	<u>G</u> X	
<u>203</u>	Acetobacter pasteurianus IFO 3283-12	В	Alphaproteobacteria	* 3.33	53.1			<u>AP011170</u>		08/26/09		Yamaguchi Univ., Japa	in [more]	P	L	<u>G</u> X	
135	Acetobacter pasteurianus IFO 3283-22	в	Alphaproteobacteria	* 3.33	53.1			AP011142		08/26/09		Yamaguchi Univ., Japa	in [more]	P	L	<u>G</u> Σ	
137	Acetobacter pasteurianus IFO 3283-26	в	Alphaproteobacteria	* 3.33	53.1			AP011149		08/26/09		Yamaguchi Univ., Japa	m [more]	P	L	<u>G</u> Σ	
<u>139</u>	Acetobacter pasteurianus IFO 3283-32	в	Alphaproteobacteria	* 3.33	53.1			AP011156		08/26/09		Yamaguchi Univ., Japa	m [more]	P	L	<u>G</u> Σ	
<u>259</u>	Acholeplasma laidlawii PG-8A	в	Firmicutes	1.5	31.9	1		CP000896.1	<u>NC_010163.1</u>	12/07/07	04/28/10	Research Institute for Chemical Medicine [m		ŢΡ	<u>D</u> <u>L</u> <u>S</u>	<u>G</u> X	E
685	Acidaminococcus fermentans DSM	в	Firmicutes	* 2.3	55.8			CP001859.1	NC 013740.1	01/15/10	00/04/00	DOE Joint Genome Ins	_	Р		C V	
	20731	Ь	Finicutes	2.3	22.0			<u>CF001839.1</u>	<u>NC_013740.1</u>	01/15/10	03/24/10	[more]		£	L	<u>G</u> Σ	
<u>525</u>	Acidimicrobium ferrooxidans DSM 10331	в	Actinobacteria	*4.4	68.3	1		CP001631.1	<u>NC_013124.1</u>	04/30/09	04/15/10	DOE Joint Genome Ins [more]	<u>titute</u>	ΙP	<u>D</u> <u>L</u> <u>S</u>	<u>6 G X</u>	E
<u>753</u>	Acidiphilium cryptum JF-5	в	Alphaproteobacteria	3.97	67.1	1	8	B <u>CP000697.1</u>	NC_009484.1	05/11/07	04/11/10	DOE Joint Genome Ins	titute	<u>T P</u>	<u>D</u> <u>L</u> <u>S</u>	<u>G</u> X	E
<u>53</u>	Acidithiobacillus ferrooxidans ATCC 23270	в	Gammaproteobacteria	3	58.8	1		CP001219.1	NC_011761.1	12/19/08	03/31/10	TIGR		IP	DLS	GX	MEI
	Acidithiobacillus ferrooxidans ATCC				50.0			00001102	200 011205 1	00/05/02		DODUCIO					
<u>689</u>	53993	в	Other Bacteria	2.9	58.9	1		CP001132.1	NC_011206.1	09/05/08	04/12/10	DOE Joint Genome Ins	<u>utute</u>	ΤP	D L S	GX	ME
085	Acidobacterium capsulatum ATCC 51196	в	Acidobacteria	* 4.1	60.5	1		<u>CP001472.1</u>	<u>NC_012483.1</u>	03/30/09	03/31/10	J. Craig Venter Institut	<u>e</u>	<u>τ</u>	<u>D</u> <u>L</u> <u>S</u>	<u>G</u> X	E I
085	Acidothermus cellulolyticus 11B	в	Actinobacteria	• 2.4	66.9	1		CP000481.1	NC_008578.1	11/09/06	04/11/10	DOE Joint Genome Ins	titute	ΤP	<u>D</u> LS	GX	EI

(b) Scroll down to the organism of choice, in this case Escherichia coli K12 MG1655.

Click on the Accession number 225 (NOT the organism name).

You will get a long list of *E. coli* genome projects, and towards the bottom:

Genome informat	ion:									
Name	RefSeq	GenBank	Publications	Length (Mbp)	GC content	Proteins	RNAs	TaxMap	CDD	COG
Chromosome	<u>NC 000913</u>	<u>U00096</u>	2	4.6	50.8%	<u>4243</u>	<u>172</u>	~	~	~
Publications:										
Elattner FR et al., "The complete genome sequence of Escherichia coli K-12.", Science, 1997 Sep 5;277(5331):1453-74 Escherichia coli str. K12 substr. MG1655 K12										
Escherichia coli str. K12 substr. MG1655 K12 Escherichia coli. This organism was named for its discoverer, Theodore Escherich, and is one of the premier model organisms used in the study of bacterial genetics, physiology, and biochemistry. This enteric organism is typically present in the lower intestine of humans, where it is the dominant facultative anaerobe present, but it is only one minor constituent of the complete intestinal microflora. <i>E. coli</i> , is capable of causing various diseases in its host, especially when they acquire vinulence traits. Strains of <i>E. coli</i> can cause uninary tract infections, neonatal meningitis, and many different intestinal diseases, usually by attaching to the host cell and introducing toxins that disrupt normal cellular processes. Vinulence proteins may be encoded on extrachromosomal plasmids or within bacteriophages or plasmid integration or transposition.										

Escherichia coli strain K-12 substrain MG1655. Non-pathogenic strain MG1655 approximates wild-type E. coli as it has been maintained with very little genetic manipulation except for the curing (removal) of bacteriophage lambda and the F plasmid. MG1655 was derived from strain W1485, which was derived by Joshua Lederberg from the original K-12 isolate obtained from a patient in 1922.

		Cellular features				Environm	Temperature		
Gram stain	Shape	Arrangement	Endospores	Motility	Salinity	Oxygen Req.	Habitat	Opt. temp.	Range
-	Rod	Singles, Pairs		Yes		Facultative	Host-associated	37C	Mesophilic
Pathogenic in: No									

The bottom portion has useful background information on *E. coli* and the particular strain MG1655. You'll see that it is a non-pathogenic strain. Therefore we can use it to compare with the genome of pathogenic strains such as *E. coli* O157:H7.

(c) About half way down the page enter the gene name narG and click on 'Find Gene'. This will then give you two maps of the genome, the linear one has the gene in the middle (which you can click on for further information), and a tiny (!) circular map indicating the general position.

The linear map is also of use to see if any other genes of interest are nearby. Find out what some of them are? Decide whether the order of genes make sense.

Genome > Bacteria > Escherichia coli str. K-12 substr. MG1655, complete genome

Lineage: Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales; Enterobacteriaceae; Escherichia; Escherichia coli; Escherichia coli K-12; Escherichia coli str. K12 substr. MG1655

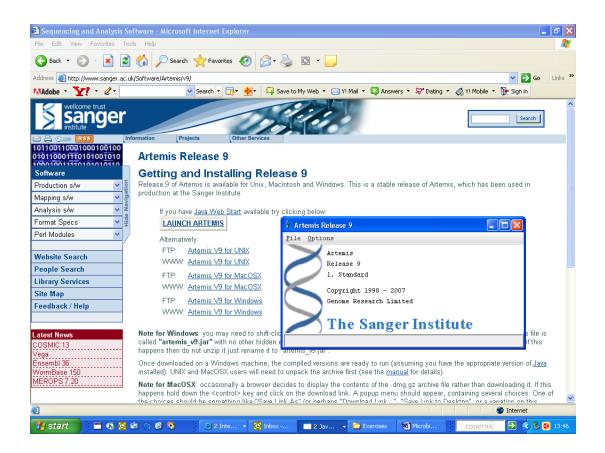
GenBank: U00036 Pri Length: 4,639,675 nt Str GC Content: 50% Ps % Coding: 85% Ott	Protein coding: <u>4132</u> Protein coding: <u>4132</u> Structural RNAs: <u>172</u> Pseudo genes: 168 Others: 578	COG TaxMap TaxPlot GenePlot gMap	Genome Project Refseq FTP GenBank FTP BLAST	Publications: [2] Refseq Status: Provisional Seq.Status: Completed Sequencing center: Univ. Wisconsin
Length: 4,639,675 nt Str GC Content: 50% Ps % Coding: 85% Ott Topology: circular Co	Structural RNAs: <u>172</u> Pseudo genes: 168 Others: 578	TaxPlot GenePlot	GenBank FTP BLAST	Seq.Status: Completed
GC Content: 50% Ps % Coding: 85% Ott Topology: circular Co	Pseudo genes: 168 Others: 578	GenePlot	BLAST	·
% Coding: 85% Ott Topology: circular Co	- 0thers: 578			Sequencing center: Univ. Wisconsin
Topology: circular Co		gMap		
			TraceAssembly	Completed: 2001/10/15
Molecule: DNA	Contigs: None		CDD	Organism Group
			Other genomes for species: 11	8
Gene Classification based on ○ iene narG was found and hi		—	Search gene, GenelD or Zoom	locus_tag: Find Gene
1,276,011 nt				1,285,9

Look up the colour coding; remember the Appendix section?

What is the function of narG? Click here to get the link to the Genbank entry, and convert to FASTA format. You will now have gone full circle with Exercises 2-4.

Background comment: The colour coding is a common feature of genomes as it helps to visualise the organisation of the genes, but the code can change between Web sites.

The example used above does require knowledge of the relevant enzymes. In this case it should be remembered that nitrate reductase is not a single protein, but a complex involving electron carriers and membrane proteins some of which are not catalytic but anchor the catalytic subunit into the membrane. In a future Exercise you will come across the <u>KEGG</u> site(<u>http://www.genome.jp/kegg/</u>)which gives excellent background to metabolic pathways.


Comment on the location of the genes. Are they clustered together? Is there evidence for operons? You need to look at the neighbouring genes and decide if their function is related to your gene.

Try repeating the exercise using other genes of interest in other modules.

Other parts of the Entrez site to explore are the Entrez Taxonomy at http://www.ncbi.nlm.nih.gov/sites/entrez?db=taxonomy

Exercise 5: Investigating a bacterial genome using Artemis

Click on this link <u>URL</u> to the Sanger Centre and access Artemis release 9: <u>http://www.sanger.ac.uk/resources/software/artemis/</u>

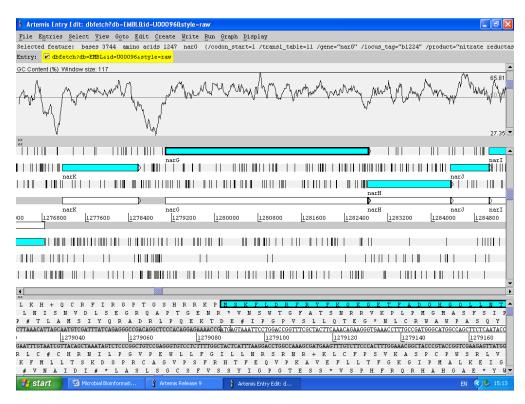
When you get this small Window, click on 'File' then 'Open from EBI –Dbfetch' and enter the accession number U00096. This is the genome for *E. coli* strain MG1655.

After about 30-45 seconds, and clicking 'No' to viewing any warning, you will get a complicated looking screen!

🕴 Artemis Entry Edit: dbfetch?db=EMBL&id=AL111168&style=raw
File Entries Select View Goto Edit Create Write Run Graph Display
John Selected
Entry: V dbfetch/db=EMBLsid=AL11168sstyle=raw
»
dnaA dnaN C10006
gyrB glrB
m misc feature misc misc feature iture leature fea misc feature :e sc feature sig misc feature :e misc feature :
800 1600 2400 3200 4000 4800 5600 6400 7200 8000 8800
misc feature misc feature sature
Cj0004c
MNPSQILENLKKELSENEYENYLSNLKFNEKQSKADLLVFNAPNEL
* I Q A KY L K I # K K N # V K T N T K T I Y Q I # N S T K N K A K Q I F + F L M L Q M N S 2
. ESKPNT * KFKKRIK * KRIRKLFIKFKIQRKTKQSRSFSF#CSK * TH
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
. FGLWISSFKFFSNLSFSYSF+KDFKFNLSFCLLASRKTKLAGFSSMA
H I W A L Y K F I # F F F # T F V F V I # * I # F E V F F L A F C I K # N K I S W I F E H S
S D L G F V Q F N L F L I L H F R I R F S N I L N L I * R F V F C L L D K L K # H E L H V * P +
source 1 1641481 3
CDS 1 1323 Original (2000) note: Cj0001, dnak, probable chromosomal replication initiator protein, len: 440 aa;
misc_feature 301 1239 HMMPfam hit to PF00308, Bacterial dnaA protein,score 4.2e-124 misc feature 427 450 PS00017 ATP/GTP-binding site motif A (P-100p)
CDS 1463 2550 Original (2000) note: 50002, dnaW, probable DNA polymerase III, beta chain, len: 355 aa; similar to e.g.
misc_feature 1483 1839 HMMPFam hit to PF00712, DNA polymerase III beta subunit, N-te, score 1.9e-11
misc feature 1864 2196 HMMPfam hit to PF02767, DNA polymerase III beta subunit, cent, score 4e-11
🚰 Start 🕴 Artemis Release 9 🔮 Artemis Entry Edit: d 🗁 CELS 👜 Microbial Bioinformat EN 🗞 📭 🐺 15:13

These three areas refer to:

Main sequence view panel. The central grey lines represent the forward and reverse DNA strands at the top and bottom. Above and below these lies are the three forward and three reverse reading frames. The stop codons are marked as black vertical bars. The coloured boxes are genes and any other features.


The nucleotide and amino acid sequences correspond with the 'Main sequence view panel'. This is a zoomed in version of the main panel to show. To show this double click on a coloured box, and the sequences will shift and highlight the region which you selected.

This bottom area lists the various features on the DNA. If you select a gene, then it will be highlighted in this area. You can also scroll through the list.

Note that both panels can be scrolled left and right, as well as zoomed in and out. The consequence of this is that it is easy to make both panels look alike – which might not be very useful.

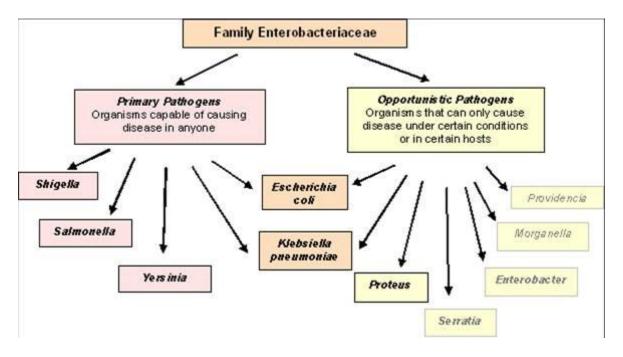
ADVICE: Don't use the zoom slide bars for now!!!

Scroll the middle slider (arrowed) to 1279200, you should find a gene that you have already looked at. Alternatively use to Goto then Navigator and enter narG in the window for 'Goto Feature With Gene Name'.

Now on the top toolbar select <u>G</u>raph, and then click % GC content.

The GC content will now be displayed (you can fine tune this with the right-hand side slide bar), and you can see that *nar*G is flanked on the left by the *nar*K gene, and this is flanked by low GC regions on both sides.

Take your time browsing the genome, you can click on genes and see what they are, and look for regions of %CG variation and whether there's anything of particular interest there – such as a virulence gene (from horizontal gene transfer) or phage DNA.

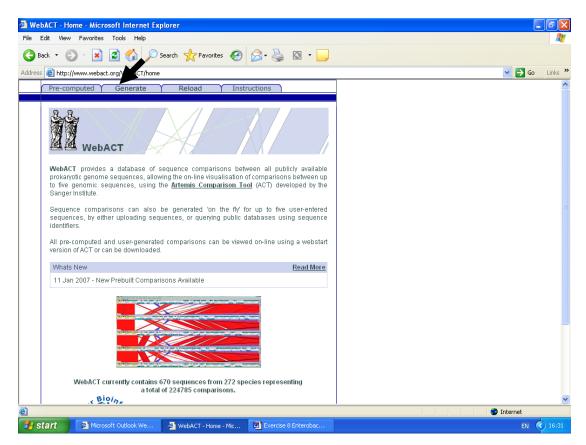

Note: A useful way of using Artemis to look at separate genomes is to have the NCBI Microbial Genome website (<u>http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi?view=1</u>) open in a separate window and then you can select the Genbank (not RefSeq) accession number quickly. If you want to look at the genome of the organism you are using in your final year project – then have a go.

Here's a few Accession numbers for whole genomes:

<i>E. coli</i> O157 AE005174	Yersinia pestis AE009952
Salmonella Typhi AL513382	Salmonella Typhimurium AE006468

Exercise 6: Comparison of whole genomes in *Enterobacteriaceae* using WebAct.

Below is a diagram from a book of the *Enterobacteriaceae* Family. The most well known members are *Escherichia coli*, and *Salmonella*, but there are others; *Enterobacter*, *Shigella*, *Edwardsiella*, *Klebsiella*, *Citrobacter*, *Proteus*, *Providencia*, *Yersinia*, *Hafnia*, *Morganella*, *Erwinia*, *Buttiauxella* and *Serratia*.


But this diagram is very simplistic and does not give any indication of relatedness, sharing of pathogenicity genes, or evolutionary development. Ask yourself 'Why are *E. coli* and *K. pneumoniae* in the middle?'

This exercise is designed to give you the opportunity to investigate the *Enterobacteriaceae* Family. Questions to ask are 'What is in common between the organisms, and hence why they are in the Family'. Related to this you can consider 'What are the differences between strains within a bacterial species'. This leads on to questions such as 'Why are most of the *E. coli* in your intestines harmless, yet *E. coli* O157:H7 so pathogenic?'.

Why is this useful? One answer is that by knowing the differences on the bacterial surface one can work towards producing specific vaccines, or detection methods by generating antibodies against unique proteins without cross-reaction with very similar, yet 'harmless' organisms.

Go to 'WebACT Prebuilt Comparison: Select Sequences ' at http:// www.webact.org/WebACT .

Click on the 'Pre-computed' tab.

This web site enables you to align whole bacterial genomes.

Some useful RefSeq numbers are:

Organism	RefSeq number
E. coli K12	U00096
E. coli O157	NC_002655
Yersinia pestis	NC_010159
Salmonella Typhi	NC_003198
Salmonella Typhimurium	NC_003197

Warning: It can get very tiresome zooming in and out and rescaling for the screen the alignments from the program. So breathe deeply, and be patient. It is a very powerful program and is used routinely by the professionals....!

We will start with a 'simple' genome to genome comparison, and then increase the number of comparisons. The software default is to compare 2 sequences.

1) Compare two strains of the same species; *E. coli* K12 and *E. coli* O157.

You may already know that *E. coli* K12 has been used for many decades in laboratories for studies into the biochemistry and genetics of bacteria. *E. coli* O157 is a pathogenic variety of *E. coli* that can causes a number of serious infections, such as haemorrhagic colitis, and haemorrhagic uraemic syndrome.

Select the two genomes from the two windows. I'll assume *E. coli* K12 is in the upper window for the example below.

Follow the menus, and click 'Next' twice, then 'Start ACT'.

Click 'No' for warnings.

A small diagram of the two genomes will appear and you can see if they are similar lengths or not.

Do not download the files, but click 'Show'.

Move the cursor to the middle section, and right click on a white area – turn off 'Locked'. Move up to the sequences and right click, turn off 'stop codons' for both sequences.

You will find a lot of red lines, indicating near identical DNA sequence matches. The blue lines are where there are good matches, but the sequences are in reverse orientation.

You can slide the sequences past each other.

What do the gaps represent?

A region which has a red block can be centralised by double clicking on it.

Use the sliders for each sequence to zoom in and out.

The middle slider acts as a filter, the default is low resolution.

Go to 242400 on the bottom slider. You will find a large region which is not joined to any corresponding region in *E. coli* K12 above. Consider what this means, and remember both are the same species.

Go to the tool bar at the top of the window.

Click on 'Graph'

Two identical menus appear, one for the upper sequence, and the other for the lower sequence.

Click on 'GC content %' for the upper sequence.

A new upper diagram will appear.

If you scroll along, and change the zoom, you will notice regions which are significantly higher or lower than others. These can be regions which have special function, or may be 'foreign' DNA which has been incorporated ie. lysogenic bacteriophages, antibiotic resistance, and pathogenicity islands.

For *E. coli* look at positions: 293000. You will see the %GC content dips for a long region, and you will find the *yag* genes (*yag*L, etc). This is the coding region for a prophage.

Go to position 353600 on the *E. coli* O157 sequence (bottom sequence) and you will see that eaeH is different lengths in the two genomes, and only the N-terminal region matches. They then match up again with ykgA.

Move the arrow back and highlight the *eae*H gene for *E. coli* O157. Then right click for 'View' menu, and then click on 'View Selected Features'. You will then find a description of the gene function, and the amino acid sequence. Could the *eae*H gene of *E. coli* O157 be involved in virulence?

A longer route is to use the link to the RefSeq files **at (blue)** <u>NC_000913.2</u> and <u>NC_002695.1</u> at via NCBI (<u>http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi</u>) to look up genes from *E. coli* K12.

Can you find other genes which are unique to *E. coli* O157? Hint : look for gaps, ie. positions 18463-24969, 241522-277462 and 300075-330124, 501537-503093. Look at the %GC pattern, notice how often it suddenly drops below the average value.

Are these possibly related to virulence?

To try another comparison you need to click on the two statues, and not on the more obvious 'Pre-computed'. This will take you back to the beginning.

WebACT - Home - Microsoft Internet Explor	or				
File Edit View Favorites Tools Help	61				
🔇 Back 🝷 🕥 - 💌 😰 🏠 🔎 Seard	th 🤺 Favorites 🙆	🚁 🎍 🛛 · 🔲			
Address a http://www.webact.org/WebACT/home					🗸 🔁 Go 🛛 Links 🎇
Pre-computed Generate	Reload Instr	uctions			^
WebACT	4				
WebACT provides a database of sequ prokaryotic genome sequences, allowing to five genomic sequences, using the <u>#</u> Sanger Institute.	the on-line visualisation o	f comparisons between up			
Sequence comparisons can also be sequences, by either uploading sequence identifiers.					Ξ
All pre-computed and user-generated co version of ACT or can be downloaded.	mparisons can be viewe	d on-line using a webstart			
Whats New		Read More			
11 Jan 2007 - New Prebuilt Comparison	s Available				
					_
	sequences from 272 spe 24785 comparisons.	cies representing			
Billine Contraction			1	2 1	nternet
	Genome Result - Micr	🕘 ClustalW - Microsoft I	WebACT - Home - Mic	🗿 Genome Result - Micr	EN 🔇 🕖 11:09

Other comparisons to consider. Note – you might well see a mass of lines, initially. So switch off the stop codons for both sequences, zoom out, and move the middle slide bar until the profile makes 'sense'.

Compare *E. coli* K12 (NC_000913) with *Salmonella* Typhimurium (NC_003197) *Salmonella* Typhimurium (NC_003198) with *Salmonella* Typhi (NC_003197) *E. coli* K12 with *Buchnera aphidicola* (NC_002528) *E. coli* K12 with *Pseudomonas aeruginosa* (NC_009656)

Using the basics of whether the bacteria have the same genus name, and the 16S tree from Part 2, ask yourself if the comparisons make sense.

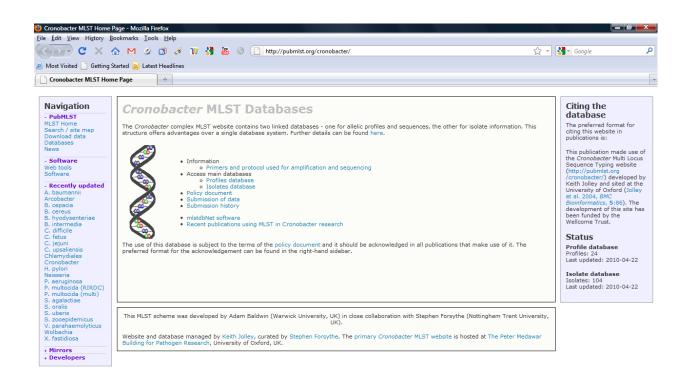
Now to go further, change the number of sequences to 3! Compare *Shigella dysenteriae* (CP000034), *E. coli* K12 (NC_000913) and *Salmonella* Typhimurium Compare *E. coli* K12 with *Salmonella* Typhi, and *S.* Typhimurium.

Notes:

1. The Accession number is specific to that sequence. There will be hundreds of *E. coli* 16S sequences in the database, and you would have a problem locating the same sequence if you searched twice, but a few weeks apart. By noting the accession number for sequence files you will make life MUCH easier for yourself.

2. Bacterial names are normally in italics as they are Genus and Species name, ie. *Escherichia* [genus] *coli* [species], however you'll notice that I have not done this for the *Salmonella* names above. The reason is that they are an exception. We now recognise that the 2400+ varieties of *Salmonella* are in fact in only two species. This is totally unhelpful, and so the second name refers to the serovar. So the name is *Salmonella* [genus] and Typhi [serovar].

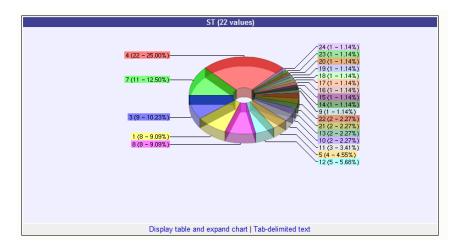
The story is a little more complicated, but it's not important enough to cover in any more depth here.

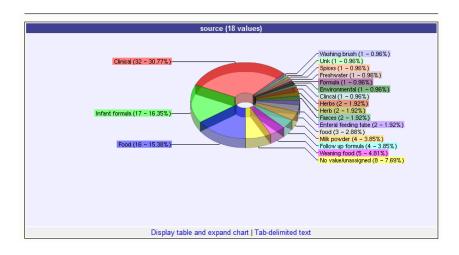

Exercise 7: Multilocus sequence typing analysis (MLST)

Part 1: Introduction to online MLST database analysis

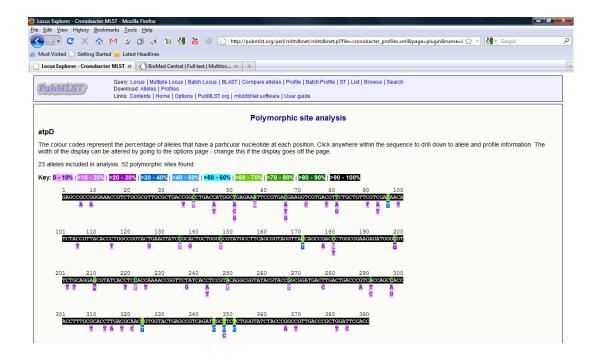
Chapter 5 (p249) refers to MLST as a means of analysing portions of genes and generating profiles. The example below uses the PubMLST web site (<u>http://pubmlst.org/</u>) which is run by the University of Oxford, UK. Not only can the user upload their own sequence data and compare with the online database, but you can also download sequences for you own analysis. The example used here is for *Cronobacter* spp. (Section 4.8.2)

The *Cronobacter* MLST scheme, in keeping with other MLST schemes, is based on 7 loci which are independent of each other. Each PCR product is about 400-500 bases in length and can be chained together to give a pseudogene of ~3500 bases. This is considerably bigger than the partial 16S rDNA sequence which is commonly used, and which also suffers from constraints of limited variability.


Go to <u>http://pubMLST.org/cronobacter</u> to get the homepage below.



From here you can access the protocols, and the databases. The original paper describing this site was by Baldwin *et al.* (2009) (BMC Microbiology;


http://www.biomedcentral.com/1471-2180/9/223) for *C. sakazakii* and *C. malonaticus* but has been extended since then to cover all *Cronobacter* species.

Click on 'Isolates database' and the 'Detailed statistics' under the 'Database statistics' heading. You've now obtain a series of pie charts indicating the sources of the strains, sequence types and allele frequencies.

To follow allele frequencies, it is possibly easier to look at the variations. So go back to the homepage, then click on 'Profiles database' and then 'Locus explorer'. For polymorphic site analysis there are pull down menu to select one of the seven alleles in the scheme. For now use the default of *atp*D and click 'submit' and you'll get the following screen. Remember that just one nucleotide difference means it is a different allele. These are numbered according to the order they were found, and do not relate to the number of differences. So allele sequences for *atp*D 1 and 26 can be only one nucleotide differences between them.

You can see that the variation is in a few locations. The colour coding shows the frequency with which the nucleotide changes at each location. If you instead choose *inf*B you get the following:

What you are looking at are variations in the DNA sequence for some housekeeping genes. Do these variations affect the protein sequence? To find out instead of using the 'Polymorphic site analysis' option use the 'Translate' instead. When you repeat for *atpD* and *inf*B you get the following:

PubM		Download: A Links: Conte									
Translate - aligned protein sequences									nces		
The width	of the alignment	can be varie	ed by going	to the optio	ns page.						
23 alleles i	included in analy	ysis.									
	10	20	30	40	50	60	70	80	90	100	
_	:										
	EPPGNRLRVALTGI									TDPSPAT	
atpD-3 1											
atpD-4_1											
atpD-5_1											
atpD-6_1											
atpD-7_1			• • • • • • • • • • •	•••••				•••••	•••••		
atpD-8_1									•••••		
	•••••						• • • • • • • • • • • •	•••••	•••••		
	•••••										
atpD-19_1											
atpD-19_1 atpD-20_1											
atpD-19_1 atpD-20_1 atpD-21_1											
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1		E									
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1		E						KTGSITSVQA	WYVPADDL:	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1		E						KIGSIISVQA	.vyvPADDL:	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1		E						KIGSIISVQA		TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1		E						KTGSITSVQA	.VYVPADDL	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1 Consensus	EPPGNRLRVALITGI	E .TMAEKFRDEGR 120 -:	130 :					KIGSIISVQA	.VYVPADDL	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1 Consensus	EPPGNRLRVALTGI	120 -: QIASLGIYPAV	130 : DPLDST					KIGSIISVQA	.VYVPADDL:	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 atpD-23_1 Consensus atpD-1_1	EPPGNRLRVALTGI	E 	130 :I DPLDST					KTGSIISVQA	.VYVPADDL	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-22_1 Consensus atpD-1_1 atpD-1_1 atpD-2_1	EPPGNRLRVALIGI	120 -:! QIASLGIYPAV	130 :I DPLDST					KTGSITSVQA	.VYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-23_1 Consensus Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-3_1	EPPGNRLRVALTGI	120 -: QIASLGIYPAV.	130 :					KIGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-20_1 atpD-21_1 atpD-23_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1	EPPGNRLRVALIGI 110 TFAHLDATVVLSR	120 -:I QIASLGIYPAV.	130 :					KTGSIISVQA	WYVPADDI;	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-21_1 atpD-21_1 atpD-23_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-4_1	EPPGNRLRVALTGI	120 -:! QIASLGIYPAV	130 					KIGSIISVQA		IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-1_1 atpD-3_1 atpD-4_1 atpD-4_1 atpD-5_1	EPPGNRLRVALIGI 110 TFAHLDATVVLSR	E. .TMAEKFRDEGR 120 -:	130 					KIGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-4_1 atpD-6_1 atpD-6_1 atpD-6_1	EPPGNRLRVALIGI	L20 QIASLGIYPAV	130 : DPLDST					KTGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-4_1 atpD-5_1 atpD-5_1 atpD-6_1 atpD-7_1 atpD-8_1 atpD-8_1	EPPGNRLRVALIGI		130 :					KTGSIISVQA	.VYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 atpD-23_1 Consensus atpD-1_1 atpD-3_1 atpD-3_1 atpD-4_1 atpD-4_1 atpD-4_1 atpD-4_1 atpD-4_1 atpD-9_1 atpD-9_1	EPPCNRLRVALICI	LZO - IZO - IZO IZOSIA SI	130 					KTGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-9_1 atpD-9_1 atpD-10_1	EPPGNRLRVALIGI 110 TFAHLDATVVLSR	L20 QIASLGIYPAV	130 					KIGSIISVQA	.VYVPADDL	TDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-1_1 atpD-1_1 atpD-3_1 atpD-5_1 atpD-5_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-10_1 atpD-10_1 atpD-11_1	EPPONRLRVALIGI	120 	130 					KIGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-21_1 atpD-22_1 atpD-22_1 Consensus atpD-2_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-5_1 atpD-6_1 atpD-7_1 atpD-9_1 atpD-9_1 atpD-9_1 atpD-1_1 atpD-1_1 atpD-1_1	EPPGNRLRVALIGI	L20 QIASLGIYPAV	130 					KIGSIISVQA	VYVPADDL:	TDPSPAT	
atpD-10_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 Consensus atpD-21_1 consensus atpD-2_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-5_1 atpD-5_1 atpD-5_1 atpD-5_1 atpD-10_1 atpD-11_1 atpD-11_1 atpD-11_1	EPPONRLRVALIGI	120 -:	130 					KTGSIISVQA	WYVPADDL:	IDPSPAT	
atpD-19_1 atpD-21_1 atpD-21_1 atpD-22_1 AtpD-22_1 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-4_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-1	EPPGNRLRVALIG	.E. .TMAEKFRDEGR 120 QIASLGIYPAV	130 DPLDST					KTGSITSVQA		IDPSPAT	
atpD-19_1 atpD-20_1 atpD-22_1 atpD-22_1 atpD-22_1 atpD-22_1 atpD-21_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-4_1 atpD-5_1 atpD-6_1 atpD-6_1 atpD-1_1	EPPGNRLRVALIGI 110 TFAHLDATVVLSR	E 	130 DVLLFVDNIY 					KIGSIISVQA	WYVPADDL	TDPSPAT	
Consensus acpD-201 acpD-221 acpD-221 Consensus acpD-21 Consensus acpD-21 Consensus acpD-21 acpD-21 acpD-21 acpD-21 acpD-41 acpD-61 acp	EPPGNRLRVALIG	L20 -1 TABLGIYPAV	130 					KTGSIISVQA		IDPSPAT	
Consensus atpD-201 atpD-221 atpD-221 Consensus atpD-21 Consensus atpD-11 atpD-21 atpD-21 atpD-21 atpD-21 atpD-41 atpD-51 atpD-51 atpD-91 atpD-91 atpD-91 atpD-121 atpD-121 atpD-141 atpD-141 atpD-171 atpD-171	EPPCNRLRVALIGI		130 130 					KTGSIISVQA	WYVPADDL	IDPSPAT	
Consensus atpD-201 atpD-211 atpD-221 atpD-221 Consensus atpD-21 Consensus atpD-11 atpD-21 atpD-21 atpD-21 atpD-41 atpD-61 atpD-61 atpD-61 atpD-61 atpD-12 atpD-11 atpD-11 atpD-11 atpD-11 atpD-11 atpD-12 atpD-11 atpD	EPPGNRLRVALIGI	120 	130 					KTGSIISVQA	.VYVPADDL:	IDPSPAT	
Consensus atpD-201 atpD-211 atpD-221 atpD-221 Consensus atpD-21 Consensus atpD-1_1 atpD-2_1 atpD-2_1 atpD-2_1 atpD-4_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-6_1 atpD-10_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-11_1 atpD-12_1 a	EPPONRLRVALTGI	120 	130 					KTGSITSVQA	.vyvPADDL:	IDESPAT	
Consensus acpD-201 acpD-221 acpD-221 Consensus acpD-21 Consensus acpD-21 Consensus acpD-21 Consensus acpD-1 acpD-2 acpD-4 acpD-6 1 acpD-6 1 acpD-6 1 acpD-6 1 acpD-1 1 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-2 acpD-1 acp	EPPGNRLRVALIG	L20 QIASLGIYPAV	130 					KIGSIISVQA	WYVPADDL	TDPSPAT	

PubM	Cuery: Locus Multiple Locus Batch Locus BLAST Compare alleles Profile Batch Profile ST List Browse Sea Download: Alleles Profiles Links: Contents Home Options PubMLST.org mlstdbNet software User guide						
		nslate - aligned protein sequences					
infB (OR							
The width	of the alignment can be varied by going to the options page.						
35 alleles	included in analysis.						
	10 20 30 40 50	60 70 80 90 100					
Consensus	:						
infB-1_1							
infB-3 1	E						
infB-4_1							
infB-6_1							
	E						
infB-9_1	S	EM					
infB-10_1 infB-11 1	. V	QL					
infB-12_1		EM					
	E						
infB-15_1							
infB-17_1							
infB-20_1							
	P						
infB-23_1							
infB-28_1							
infB-31_1							
infB-34_1							
	ASGEAGGITQHIGAYHVQTDNGMITFLDTPGHAAFTAMRARGAQATDIVVLVVAADI						
	110 120 130 140 150						
	HGIIPEEWGGDCQFVHVSAKAGTGIDELLDAILLQSEVLELKAVRKG						
infB-1_1 infB-2_1	Y.VMESIPDNAN.						
infB-3_1							
infB-4_1 infB-5 1							
infB-6_1	ESH						
	Y.VMEA.IPVD.N.AN. Y.VMEA.IPVD.N.AA.						
infB-9_1	Y.VMEAIPDNA						
	L Y.VMEA. IPD. NA L Y.VMEA. IPD. NA						
infB-12_1	L Y.VMEAIPDNA						
infB-14_1	L YLES						
infB-15_1	L						
	L						
	LHH						
infB-20_1	L						
	L						
infB-23_1							
	L						
infB-26_1							
	LESH						
infB-29_1	L						
	L						
infB-32_1	L						
infB-33_1 infB-34_1	L						
infB-35 1							
Consensus	B HGIIPEEWGGDCQFVHVSAKAGTGIDELLDAILLQSEVLELKAVRKG						

So the variations in *atp*D did not result in much variation in the amino acid sequence; position 23 D and E.

Why did it not cause much change? Think about the genetic code and its redundancy and the third base variation.

There appears to be more amino acid sequence change for *inf*B. For example, at position 18 it is Q or E. Use the Appendix (b) 'Amino acid codes' to look up what these amino acids are, and consider how significant these variations in the amino acid sequences are. For this example it is glutamine (Q) and glutamate (E). You may be surprised how informative this analysis can be. Remember you are using the online analysis facility. Next we'll look at how easy the sequences can be downloaded for you own analysis.

Part 2: Data download from MLST database

Go to back to the *Cronobacter* MLST home page (<u>http://pubmlst.org/cronobacter/</u>), and select the 'Profiles database'.

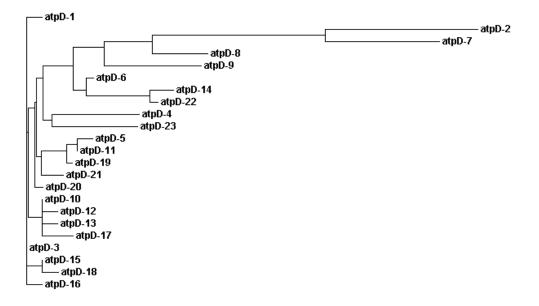
At the top right hand corner you'll see 'Downloads' where you can either download the allele sequences, or allelic profiles.

The allelic profiles look like this:

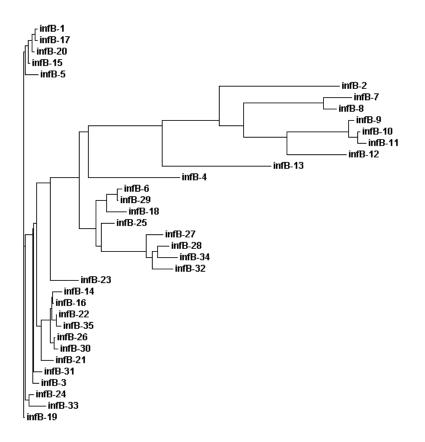
ST	atpD	fusA	glnS	gltB	gyrB	infB	pps
1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2
3	3	3	3	5	3	3	3
4	5	1	3	3	5	5	4
5	6	5	4	4	6	6	5
6	9	6	5	6	7	13	7
7	10	7	6	7	9	14	9
8	11	8	7	5	8	15	10
9	21	10	9	5	3	3	3
10	3	7	11	7	10	16	8
11	17	7	17	11	17	22	12
12	18	17	10	12	18	24	18
13	15	14	15	13	22	5	16
14	1	1	1	1	1	1	11
15	5	9	3	3	5	5	4
16	15	1	3	9	14	19	15
17	3	12	16	5	16	20	14
18	20	18	16	10	3	20	20
19	22	22	14	16	24	18	24
20	16	14	24	17	25	33	25
21	3	11	13	18	11	17	13
22	16	1	19	19	26	5	26
23	20	18	16	10	3	20	27
24	14	22	14	20	13	18	28

Which gives the allele numbers making up each Sequence Type (ST)?

What is more useful is downloading the allele sequences:


Format	atpD	fusA	gInS	gltB	gyrB	infB	pps
FASTA	₽	₽	↓	₽	₽	≁	₽
MEGA	₽	₽	↓	₽	₽	↓	₽
CLUSTALW	₽	↓	↓	₽	₽	↓	₽
MSF	₽	↓	↓	↓	∔	₽	₽
PHYLIP	Ŧ	↓	↓	↓	↓	↓	₽

By clicking on the FASTA arrow for atpD you get all the atpD sequences in the database. I'm sure you'll agree this is a lot faster than using Genbank and NCBI!


Let's complete the circle and go back to Exercise 1 to make phylogenetic trees. Download the *atp*D sequences and save in Notepad or another simple word processor, and then download the *inf*B sequences.

Use the ClustalW program at <u>http://www.ebi.ac.uk/clustalw/index.html</u> to make two phylogenetic trees.

atpD phylogram

infB phylogram

You can then use text boxes to more fully annotate the trees with respect to whether certain branches are food isolates, or a particular species within a genus, etc.

Appendix : Sequence codes

a) DNA codes

Sequences are expected to be represented in the standard IUB/IUPAC amino acid and nucleic acid codes, with these exceptions: lower-case letters are accepted and are mapped into upper-case; a single hyphen or dash can be used to represent a gap of indeterminate length; and in amino acid sequences, U and * are acceptable letters (see below). Before submitting a request, any numerical digits in the query sequence should either be removed or replaced by appropriate letter codes (e.g., N for unknown nucleic acid residue or X for unknown amino acid residue).

The nucleic acid codes supported are:

- $M \rightarrow A \text{ or } C \text{ (amino)}$ $A \rightarrow adenosine$
- $C \rightarrow cytidine$ $S \rightarrow G \text{ or } C \text{ (strong)}$
- $G \rightarrow guanine$ $W \rightarrow AT$ (weak) $B \rightarrow G, T \text{ or } C$
- $T \rightarrow thymidine$
- $U \rightarrow uridine$
- $R \rightarrow G A$ (purine)
- $Y \rightarrow T C$ (pyrimidine)
- $K \rightarrow G T$ (keto)
- $D \rightarrow G. A \text{ or } T$ $H \rightarrow A, C \text{ or } T$
- $V \rightarrow G, C \text{ or } A$
 - $N \rightarrow A, G, C \text{ or } T \text{ (any)}$
 - gap of indeterminate length

b) Amino acid code

These codes are used by BLASTP and TBLASTN.

- A alanine
- B aspartate or asparagine
- C cystine
- D aspartate
- E glutamate
- F phenylalanine
- G glycine
- H histidine
- I isoleucine
- K lysine
- L leucine

37

- M methionine
- N asparagine

- P proline
- Q glutamine
- R arginine
- S serine
- T threonine
- U selenocysteine
- V valine
- W tryptophan
- Y tyrosine
- Z glutamate or glutamine
- X any
 - * translation stop
- gap of indeterminate length

c) Colour Code.

Be aware that this coding can change between Web sites.

 Amino acid biosynthesis

 Purines, pyrimidines, nucleosides, and nucleotides

 Fatty acid, phospholipid and sterol metabolism

 Biosynthesis of cofactors, prosthetic groups, and carriers

 Central intermediary metabolism

 Energy metabolism

 Transport and binding proteins

 DNA replication, restriction, modification, recombination, and repair

 Translation

 Regulatory functions

 Cell envelope

 Cellular processes

 Other categories

 Hypothetical

Below is the black and white version of the above:

Can you see it?